Selectable marker genes in transgenic plants: applications, alternatives and biosafety.
نویسندگان
چکیده
Approximately fifty marker genes used for transgenic and transplastomic plant research or crop development have been assessed for efficiency, biosafety, scientific applications and commercialization. Selectable marker genes can be divided into several categories depending on whether they confer positive or negative selection and whether selection is conditional or non-conditional on the presence of external substrates. Positive selectable marker genes are defined as those that promote the growth of transformed tissue whereas negative selectable marker genes result in the death of the transformed tissue. The positive selectable marker genes that are conditional on the use of toxic agents, such as antibiotics, herbicides or drugs were the first to be developed and exploited. More recent developments include positive selectable marker genes that are conditional on non-toxic agents that may be substrates for growth or that induce growth and differentiation of the transformed tissues. Newer strategies include positive selectable marker genes which are not conditional on external substrates but which alter the physiological processes that govern plant development. A valuable companion to the selectable marker genes are the reporter genes, which do not provide a cell with a selective advantage, but which can be used to monitor transgenic events and manually separate transgenic material from non-transformed material. They fall into two categories depending on whether they are conditional or non-conditional on the presence of external substrates. Some reporter genes can be adapted to function as selectable marker genes through the development of novel substrates. Despite the large number of marker genes that exist for plants, only a few marker genes are used for most plant research and crop development. As the production of transgenic plants is labor intensive, expensive and difficult for most species, practical issues govern the choice of selectable marker genes that are used. Many of the genes have specific limitations or have not been sufficiently tested to merit their widespread use. For research, a variety of selection systems are essential as no single selectable marker gene was found to be sufficient for all circumstances. Although, no adverse biosafety effects have been reported for the marker genes that have been adopted for widespread use, biosafety concerns should help direct which markers will be chosen for future crop development. Common sense dictates that marker genes conferring resistance to significant therapeutic antibiotics should not be used. An area of research that is growing rapidly but is still in its infancy is the development of strategies for eliminating selectable marker genes to generate marker-free plants. Among the several technologies described, two have emerged with significant potential. The simplest is the co-transformation of genes of interest with selectable marker genes followed by the segregation of the separate genes through conventional genetics. The more complicated strategy is the use of site-specific recombinases, under the control of inducible promoters, to excise the marker genes and excision machinery from the transgenic plant after selection has been achieved. In this review each of the genes and processes will be examined to assess the alternatives that exist for producing transgenic plants.
منابع مشابه
Concerns of resistant markers in marine ecosystem transformed plants
World population growth and requirement to global food security, application of genetic engineering and utilization of transgenic organisms have made more important. Using this technology, without regarding to its risks, can cause loses to environment. To generate transgenic organisms, selection systems are applied that cause to selective growth of transformed cells. Antibiotic resistance genes...
متن کاملThe necessity of transgenic technology in sustainable production
It has been more than half a century that plant geneticists and breeders have been trying to assemble a combinationof genes in crop plants, in order to make them as suitable and productive as possible. Plant transformation technology incrop plants was first undertakenin the 1980s based on the ability of foreign gene integration into host plant genome andregeneration of transformed plant cells i...
متن کاملSelectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants
Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...
متن کاملDevelopment of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision
Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM) crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants w...
متن کاملBiolistic co-transformation of rice using gold nanoparticles
ABSTRACT- In order to produce transgenic rice lines lacking selectable marker gene, biolistic co-transformation technique using gold nanoparticles was adopted. In the first step, the efficiency of different sizes of gold particles was evaluated. The results showed that the efficiency of the nanoparticles in the transformation was comparable to that of the micro particles. Subsequently, two sepa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biotechnology
دوره 107 3 شماره
صفحات -
تاریخ انتشار 2004